
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Integrating Regex, Greedy Algorithms, and Levenshtein Distance

for Enhanced Search Functionality on Stack Overflow

Filbert - 13522021

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13522021@std.stei.itb.ac.id

Abstract— In the digital age, the efficiency of search

mechanisms in technical forums such as Stack Overflow is

crucial for enhancing user experience and providing quick

access to relevant information. This paper introduces a

sophisticated approach that combines regular expressions

(regex), greedy algorithms, and Levenshtein Distance to

refine search query results on Stack Overflow. Regular

expressions are employed to parse and extract meaningful

patterns from user queries, while greedy algorithms

optimize the selection process for the most relevant

answers by maximizing matching criteria. Furthermore,

the Levenshtein Distance is utilized to correct and suggest

potential query refinements, thereby accommodating

common typographical errors and improving the accuracy

of search results. Our methodology demonstrates

significant improvements in retrieving precise and

contextually relevant information, thereby reducing search

time and enhancing user satisfaction. The integration of

these three techniques provides a robust framework for

improving search functionalities in community-driven

Q&A websites, where quick access to accurate information

is highly valued.

Keywords—Regular Expressions; Greedy Algorithms;

Levenshtein Distance; Search Optimization; Stack Overflow

I. INTRODUCTION

In the ever-expanding domain of software development and
IT, forums like Stack Overflow have become indispensable
resources for professionals and enthusiasts alike. Stack
Overflow, in particular, stands out as one of the most
prominent technical forums globally, offering a vast repository
of questions and answers that cater to a wide range of
programming and software development issues. As of the latest
statistics, Stack Overflow hosts millions of questions and has
become a critical tool for developers seeking to resolve
technical challenges swiftly.

However, despite its comprehensive database and user-
friendly design, finding the most relevant information on Stack
Overflow can sometimes be a daunting task. Users often rely
on the platform's search functionality to find answers to their
specific problems. This process involves typing queries into the
search bar and sifting through the results presented. The

effectiveness of this search is crucial as it directly impacts the
user's ability to find helpful information quickly. Current
search mechanisms primarily depend on keyword matching,
which can lead to two significant issues: the omission of
relevant results due to the rigid nature of keyword searches and
the failure to retrieve correct information if the query contains
typographical errors.

The first issue arises from the inherent limitations of
keyword-based search algorithms, which rely heavily on the
exact terms entered by the user. If a user does not know the
precise terminology used in relevant discussions or if the query
is not perfectly aligned with the language in the database, the
search results may not be entirely pertinent. This problem is
exacerbated by the diverse ways in which a single technical
concept can be described, leading to variations in phrasing and
terminology across different posts.

The second issue pertains to the sensitivity of keyword
searches to typographical errors. Stack Overflow’s current
search engine, like many others, lacks a robust mechanism for
handling misspellings or slightly incorrect queries.
Consequently, a user making a small typo or not knowing the
exact correct spelling of technical terms might end up with no
useful results. In a field where precise terminology is often
crucial, the ability to recognize and correct user input errors or
suggest closely related terms can significantly enhance search
effectiveness.

Figure 1 Example searching not found

Source :
https://stackoverflow.com/search?q=hydrtion+ui+error

To address these challenges, this paper proposes a novel
approach that integrates regular expressions (regex), greedy
algorithms, and the Levenshtein Distance(LD) into the search
functionality of Stack Overflow. The use of regular expressions
allows for flexible pattern matching, which can accommodate
variations in phrasing and terminology. Greedy algorithms
improve the efficiency and relevance of the search results by
prioritizing matches that meet the most criteria first.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Meanwhile, the Levenshtein Distance provides a method for
handling typographical errors by measuring the difference
between strings and suggesting the nearest correct terms.

This integrated approach aims to revolutionize the search
process on Stack Overflow, ensuring that users not only find
what they are looking for more quickly and accurately but also
discover valuable content that they may not have uncovered
through conventional search techniques. By enhancing the
platform's ability to handle varied input and correct errors, This
program can significantly improve user satisfaction and access
to information. This paper will detail the methodology,
implementation, and testing of these enhancements, alongside a
comprehensive analysis of their impact on search quality and
user experience on Stack Overflow.

II. THEORY AND CONCEPTS

A. Regular Expressions

Regular expressions, commonly abbreviated as regex,

serve as a robust tool for efficient pattern matching and

manipulation of strings. They are built on a syntactic

framework that allows for precise identification of string

patterns through a composed sequence of characters. This

sequence, termed a pattern, can match various combinations of

characters within a text, making regex invaluable for tasks like

searching, replacing, and parsing data in text processing or

programming environments.

The functionality of regex is derived from its use of a

mixture of symbols and characters that denote specific

meanings. For example, character classes like [a-z] match any

lowercase letter, while quantifiers like * (indicating zero or

more repetitions of the preceding element) and + (one or more

repetitions) adjust the breadth of matches. Anchors (^ and $)

are employed to signify the start and end of a string,

respectively, ensuring that the pattern matches in specific

positions. Beyond simple matches, regex can capture subsets

of strings using parentheses for grouping, which facilitates

complex substitutions and rearrangements of data within

strings.

Figure 2. Regex attribute

Source: [4]

Regex also get several function to manipulate text,

including:

• Matching: Identifying specific patterns within text

using functions like match() or findall(). These

functions allow for the detection and retrieval of

patterns that meet predefined criteria, aiding in tasks

such as data extraction and keyword detection.

• Validation: Ensuring that a text conforms to a

specified pattern using functions such as search() or

match(). Validation is crucial in scenarios like form

input where the correctness of data, such as phone

numbers or email addresses, needs to be confirmed

against a standardized format.

• Replacement: Substituting matched patterns with new

text using functions such as sub() or subn(). This is

often used in editing texts to update specific

information or to anonymize sensitive data within a

body of text by replacing names, identifiers, or other

personal information with generic placeholders.

• Splitting: Dividing text into segments based on a

particular pattern using functions like split(). This

method is particularly useful for parsing data, such as

extracting words, phrases, or other components from

structured or semi-structured text formats.

Internally, regex patterns are processed by regex engines

that can implement either deterministic or nondeterministic

finite automata to efficiently find matches. These engines

parse the regex pattern and execute the search across the

targeted string, applying the pattern rules sequentially to

determine matches. The sophistication of regex in handling

complex string operations, combined with its integration in

many programming languages and tools, underscores its utility

in diverse computational tasks.

B. Greedy Algorithm

The greedy algorithm is a straightforward yet powerful
approach used primarily in optimization problems where a
local optimum is selected at each step with the hope of finding
a global optimum. It builds the solution incrementally, making
the locally optimal choice at each stage without regard for
future consequences. This method is particularly effective in
scenarios where the local optimum at each stage aligns with the
global optimum, such as in the cases of constructing a minimal
spanning tree or solving the coin change problem.

In practice, the greedy algorithm follows a systematic
process defined by several key elements:

• Candidate Set (C): This is the set containing all the
options available for selection at each step. It provides
the pool from which choices are made in the pursuit of
an optimal solution.

• Solution Set (S): This set accumulates the chosen
candidates that collectively form the evolving solution
to the problem.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

• Solution Function: This function determines whether a
chosen subset of candidates successfully constitutes a
complete solution to the problem.

• Selection Function: This function is crucial for
implementing the greedy strategy. It selects the most
promising candidate based on a specific heuristic that
typically aims to maximize or minimize certain
attributes immediately.

• Feasibility Function: This function evaluates whether a
candidate, once selected, can feasibly be added to the
solution set without violating problem constraints.

• Objective Function: This function seeks to maximize
or minimize a variable or set of variables within the
problem, thus defining the ultimate goal of the
algorithm.

 The greedy algorithm continues to evaluate until no further
selections can be made. The key to a greedy algorithm's
success lies in its selection strategy, which must guarantee the
attainment of an optimal solution. However, its main drawback
is that it doesn't always produce the optimal solution for all
problems, particularly those requiring future considerations
overlooked by a purely local perspective.

A classic example of a greedy algorithm is the problem of
making change using the fewest coins possible. Imagine you
are a cashier and need to give someone change using the least
number of coins. Suppose you have an unlimited supply of
quarters (25 cents), dimes (10 cents), nickels (5 cents), and
pennies (1 cent), and you need to give 99 cents in change. The
greedy approach would start by selecting the coin with the
highest value that does not exceed the remaining amount of
change needed. You would first use three quarters (75 cents),
reducing the remaining change to 24 cents. Next, you would
use two dimes (20 cents), bringing the remaining change down
to 4 cents. Then, you would use four pennies to make up the
remaining amount. This method quickly and effectively
minimizes the number of coins, as at each step, it opts for the
largest possible denomination that can be used, which is a
hallmark of greedy algorithms. This approach works perfectly
for currencies like the U.S. dollar, where smaller
denominations are always fractions of larger ones, ensuring
that the greedy solution is also the optimal solution.

C. Levenshtein Distance Algorithm

The Levenshtein Distance Algorithm quantifies the

similarity between two strings by measuring the minimum

number of single-character edits required to transform one

string into the other. This metric is particularly useful in fields

such as natural language processing, where it aids in tasks like

spell checking and phonetic comparisons, and in

bioinformatics, particularly in DNA analysis.

The algorithm operates by constructing a matrix where

each cell (i, j) represents the Levenshtein distance between the

first i characters of one string and the first j characters of

another. Initialization of this matrix starts with setting the first

row and column to represent the incremental transformation of

each string from an empty string to the full string. As the

matrix populates, each cell is filled based on the operations

required to match the characters of both strings up to that

point, choosing the lowest cost among insertion, deletion, and

substitution. The cost is determined by whether the characters

at the current position in the two strings match. If they do, the

cost is zero (no operation needed); otherwise, it is one (one

operation needed). The final value at the bottom-right corner

of the matrix provides the total number of edits needed.

For instance, let's consider the strings "kitten" and

"sitting". The Levenshtein Distance between these two strings

can be calculated as follows:

1. Substitution: Change 'k' in "kitten" to 's' to get "sitten".

2. Substitution: Change 'e' in "sitten" to 'i' to get "sittin".

3. Insertion: Add 'g' at the end of "sittin" to get "sitting".

Thus, it takes three operations to transform "kitten" into

"sitting". The Levenshtein Distance between these two words

is 3.

Figure 3 LD definition

Source : https://en.wikipedia.org/wiki/Levenshtein_distance

This algorithm's complexity is generally O(mn), where m

and n are the lengths of the two strings, making it

computationally intensive for very long strings without

optimization strategies like trimming equal substrings from the

start or end of the strings.

D. Caching Mechanisms

Caching is a technique to temporarily store copies of data in

locations of faster access. Caching is critical in performance

optimization, especially where operations involve expensive

or frequently accessed data. In computational algorithms,

caching can significantly reduce the time complexity by

avoiding redundant recalculations.

In the context of the Levenshtein Distance and other

computationally intensive operations, caching previously

computed results of function calls (memoization) prevents the

need to recompute them for every query, thereby enhancing

performance. Using a Least Recently Used (LRU) cache

mechanism can be particularly effective in environments like

Stack Overflow, where certain queries may be more common

than others. The cache stores a limited number of the most

recently used queries and their results, discarding the least

recently used if the cache exceeds its capacity limit.

III. IMPLEMENTATION

The process of enhancing Stack Overflow's search
functionality can be abstracted into several stages, mirroring
the complexity of the problem and requiring a systematic
approach to its solution. Initially, the challenge is translated

https://en.wikipedia.org/wiki/Levenshtein_distance

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

into a programmable format. This implementation involves
multiple components: the core algorithms (Regex, Greedy, and
Levenshtein Distance) and their integration within a cohesive
system designed to handle and improve search queries
effectively. Each component serves a unique role in refining
the search process, from initial query processing to the final
delivery of optimized results. Below, we detail the
implementation stages and describe how each algorithm is
utilized within the broader system architecture.

Data Gathering

Figure 4. Code Snippet of gathering data from API

The data gathering process for the enhanced search system
on Stack Overflow is conducted through a meticulous approach
utilizing the Stack Overflow API. This API provides a robust
platform for retrieving detailed question data directly from
Stack Overflow, which includes titles, content, answer counts,
comment counts, and other engagement metrics relevant to the
search queries.

To fetch the data, a Python function `fetch_questions` is
employed, which makes HTTP GET requests to the Stack
Overflow API's search endpoint. This function accepts two
parameters: `topic`, which specifies the subject or keywords to
search for, and `max_items`, determining the maximum
number of questions to retrieve. The function utilizes a loop to
handle pagination, ensuring that if more than 100 items are
needed (the maximum number of items retrievable in a single
API call due to pagination limits), additional requests are made
until the desired number of questions is gathered or no more
relevant questions are available.

The API requests are strategically customized with a
variety of parameters to optimize and refine the search results
effectively. The `page` parameter is utilized to control the
pagination of the results, ensuring that all relevant data can be
accessed sequentially. The `pagesize` parameter specifies how
many results appear per page, with a limit of up to 100 items,
maximizing the data retrieved per request. Sorting and ordering
are managed by the `order` and `sort` parameters, which
prioritize the questions fetched by their relevance and recent
activity, thus ensuring that the most currently pertinent
questions are retrieved first. The `intitle` parameter narrows the
search to include only those questions that contain the specified

keywords within their titles, enhancing the relevance of the
search results to the user's query. The `site` parameter
specifically targets the Stack Overflow site, maintaining the
focus of the data retrieval. A custom `filter` is used to obtain
detailed question attributes that are crucial for subsequent
processing and evaluation, tailoring the fetched data to the
needs of the application. Additionally, an API key (`key`) is
provided to enhance the request limit and expand access
capabilities within the Stack Overflow API, allowing for more
robust and extensive data interaction.

Responses from the API are parsed as JSON, and the
relevant data is extracted and added to a list of questions. The
function handles errors and status codes by printing appropriate
messages, which assists in troubleshooting and maintaining the
robustness of the data gathering process.

 This method of data gathering via the Stack Overflow API
not only ensures access to real-time and comprehensive data
but also aligns with efficient programming practices by
handling pagination and maximizing data retrieval through
optimized API calls. This setup is crucial for supporting the
advanced search functionalities of the system, where having
access to a wide range of up-to-date questions and their
metadata significantly enhances the relevance and accuracy of
the search results.

A. Regular Expressions (Regex)

Figure 5. Code Snippet of regex function

The generate_regex_patterns function is designed to
construct a regex pattern capable of recognizing a wide range
of variations for each word in a given search term. This is
achieved through a dictionary, leet_speak_substitutions, which
maps standard alphabetic characters to regex patterns that
include their common leetspeak or symbolic representations.
For instance, the letter 'a' might be represented as '4' or '@' in
leetspeak, thus the mapping 'a' to [a4@]. This allows the regex
engine to match any of these characters, making the search
robust against variations in user input. The function processes
each word in the search term separately, replacing each
character with its corresponding pattern from the dictionary.
These patterns are then concatenated into a single regex pattern
using word boundaries (\b) to ensure matches occur at the
boundaries of words. The resulting pattern is compiled with
case-insensitivity to broaden the search's scope, making it more

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

likely to match relevant results irrespective of the case used in
the query.

Figure 6. Code Snippet of generating variations from input

Conversely, the generate_variations_from_pattern function
creates a comprehensive list of potential variations of the
search term, considering common substitutions and errors. This
is handled through a substitutions dictionary, which, like the
regex function, maps characters to possible substitutions but is
utilized here for generating direct string variations. The
function examines each word in the search term, identifying
characters with potential substitutions. For words containing
substitutable characters, it uses the product function from the
itertools module to generate all possible combinations of the
original and substituted characters. These combinations are
then joined to form new word variations, which are added to
the list of variations if not already included. This approach
ensures the generation of a broad set of query variations,
enhancing the search system's ability to accommodate and
correct user errors or unconventional spelling.

These functions, when combined, provide a robust
mechanism for handling and refining search queries. The regex
patterns generated by generate_regex_patterns are utilized to
scan and match content within Stack Overflow, allowing for
the retrieval of relevant information that matches various user-
input patterns. Meanwhile, the variations produced by
generate_variations_from_pattern are used to formulate
multiple query strings, which can be sent to the Stack Overflow
API. This method ensures that the search covers a wide array
of potential user intents, increasing the effectiveness of the
search system in providing accurate and useful results.

B. Greedy Algorithms

Figure 7. Code Snippet of greedy function

The match_questions_using_greedy function plays a

pivotal role in optimizing the search process by efficiently

ranking questions based on their relevance to the user's query

and their engagement metrics on Stack Overflow. This

function embodies the principles of a greedy algorithm, which

strives to find a locally optimal solution at each step with the

hope that these local optima will lead to a global optimum.

The function begins by iterating over a list of questions

that have been preliminarily fetched based on the user's search

term. For each question, it utilizes a compiled regex pattern to

find and count matches of the search term within the

question's title. This pattern matching step is crucial as it

assesses the relevance of each question to the search term

based on the presence and frequency of matching terms in the

title.

After identifying matches, the function calculates a score

for each question by considering both the number of matches

(title_score) and the question's engagement metrics, such as

the number of answers and comments it has received. The

title_score is given a higher weighting by doubling its value,

emphasizing the importance of relevance over engagement.

However, the engagement score, calculated by doubling the

answer count and adding the comment count (with a base

value of one to ensure a minimum score for engagement), also

plays a significant role. This composite score helps in

prioritizing questions that are not only relevant but also

deemed valuable by the community.

Once all questions have been evaluated and scored, the

function sorts them in descending order based on their

computed scores. This sorting step is where the greedy nature

of the algorithm is most evident, as it selects the top questions

based on the highest scores without re-evaluating or

backtracking. The function then returns the top 20 questions,

making the assumption that these represent the best match to

the user's query based on the combined criteria of relevance

and community engagement.

C. Levenshtein Distance Algorithm

Figure 8. Code Snippet of Levenshtein Distance function

The levenshtein_distance function implements the
Levenshtein Distance algorithm, which is a well-known

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

method for measuring the difference between two strings. This
algorithm calculates the minimum number of single-character
edits (insertions, deletions, or substitutions) required to change
one string into another, providing a quantitative basis for
comparing string similarity. This function is particularly useful
in applications such as spell checking, error correction in text
inputs, and anywhere else where measuring how similar two
strings are is useful.

The implementation starts by ensuring that the first string
(s1) is not shorter than the second string (s2), as this
standardizes the calculation process. If s1 is shorter, the
function calls itself with the order of the parameters switched.
This adjustment guarantees that the algorithm always processes
the shorter string in terms of the number of columns in the
dynamic programming table, optimizing space complexity.

The core of the Levenshtein Distance algorithm lies in its
use of dynamic programming. This method involves building
up a solution using previously solved subproblems. The
function initializes a list (previous_row) with a sequence from
0 to the length of s2, representing the initial cost of deleting
characters from s2 to match an empty s1.

For each character in s1, the function iterates over the
characters in s2, computing the costs of insertions, deletions,
and substitutions. Specifically:

• Insertions are calculated by adding one to the previous
row's cost at the same index, reflecting the cost of
inserting a character from s2 into s1.

• Deletions are accounted for by adding one to the
current row's previous cost, representing the removal
of a character from s1 to match s2.

• Substitutions are calculated based on whether the
current characters in s1 and s2 match; if they don't, the
cost is the previous diagonal cost plus one; otherwise,
it is just the previous diagonal cost.

The minimum of these three values is then determined for
each character pair, and this minimum cost is added to the
current_row, which tracks the computation for the current
character of s1.

 After processing all characters of both strings, the last value
in previous_row, which now represents the full cost of
transforming s1 into s2, is returned. This value is the
Levenshtein Distance, indicating the minimum edit distance
between the two strings.

D. Caching

Figure 9. Code Snippet of caching implementation

The cached_levenshtein_distance function leverages

Python’s functools.lru_cache decorator, a powerful feature

that implements memoization to optimize the performance of

function calls that perform computationally intensive

operations. By caching the results of previous invocations of

the levenshtein_distance function, it avoids redundant

calculations by storing and retrieving the results of function

calls based on the function's input arguments. The cache can

hold up to 10,000 unique function calls, which significantly

reduces the processing time, especially when the function is

used frequently in contexts like checking a large number of

words against a user's input. This caching strategy is

particularly effective when dealing with a finite set of

potential matches, such as a dictionary of words, where many

words might be repeatedly compared against different input

terms during the course of a user session.

Figure 10. Code Snippet of finding closest word function

The find_closest_word function is designed to identify the

word in a given dictionary that most closely matches an input

word, based on the Levenshtein Distance. This function

iterates over each word in the dictionary, computing the

distance to the input word using the

cached_levenshtein_distance to ensure efficiency.

The function incorporates a few intelligent tweaks to refine

its search for the closest match:

• Initial Letter Bias: The function provides a small

heuristic bonus (reducing the distance by 0.5) if the word

in the dictionary starts with the same letter as the input

word. This heuristic is based on the observation that

words that start with the same letter are more likely to be

related in meaning or more likely to be the intended word

if there's a typographical error in the input.

• Length Consideration: Another heuristic adjustment

reduces the distance by 0.5 if the word in the dictionary is

within one character in length of the input word. This

adjustment is useful for catching common typos like

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

missing letters, extra letters, or substituted letters, which

might not significantly alter the length of the word.

The function keeps track of the word with the minimum

distance found during the iteration. If this minimum distance

is greater than a threshold (in this case, 2), or if no word has

been identified as a close match (closest_word is None), the

function defaults to returning the original input word,

suggesting that no sufficiently close correction was found

within the dictionary. Otherwise, it returns the word that was

identified as having the closest Levenshtein Distance to the

input.

E. Code flow

Figure 11. Code Snippet of refining search query function

Figure 12 & 13. Code Snippet of main program

The author now will explain how the program is working.
Given the search term is “hyperparameter tuning makes
accuracy lower”. When the search term is inputted, the
program first invokes the generate_regex_patterns function.
This function creates a regular expression pattern that can
recognize variations in the input term. It does so by mapping
each alphabetic character in the search term to a regex pattern
that includes possible substitutions based on common typos or
leetspeak variations. For example, "hyperparameter" could be
distorted to "hyp3rparamet3r", but the regex pattern will still
match it because of the substitutions defined (e.g., 'e' to '[e3]').

Next, the generate_variations_from_pattern function
produces a list of possible variations of the search term to
account for different ways users might misspell or vary their
queries. This list helps in broadening the search to include
queries that might not exactly match the original input but are
close variations of it.

The program then attempts to fetch questions from the
Stack Overflow API using these variations. It starts with the
exact input term and searches for questions that match this
term. If it finds questions, it proceeds to process them; if not, it
iterates through other generated variations, sending requests to
the API until it either finds questions or exhausts the variations.

In this specific instance, no questions were found matching
the complete search phrase "hyperparameter tuning makes
accuracy lower". This triggers a broader search mechanism
where the program isolates the first significant term
"hyperparameter" and regenerates regex patterns and variations
for this narrower term. It then repeats the fetch process. If
broadening the search term still does not yield the fetched
question, the program will check for similar words using the
Levenshtein Distance algorithm to find the closest match
between the input and the words in the dictionary. If refining
the search query still does not retrieve the question, the
program will stop and end with no solutions retrieved.

Once questions are fetched for the term "hyperparameter",
the match_questions_using_greedy function sorts these
questions based on a scoring system that prioritizes the
relevance (number of regex matches in the title) and
engagement metrics (answers and comments). This greedy
algorithm ensures that the questions most likely to be useful are
selected and ranked at the top of the results list.

Finally, the selected questions are displayed, with details
such as title, link, score, number of comments, answers, and
views. This list provides users with direct access to discussions
and solutions relevant to their query about "hyperparameter
tuning," even though the original, more complex query did not
directly yield results.

IV. TESTING AND ANALYSIS

For the enhanced search tool developed for Stack
Overflow, we have conducted detailed testing using multiple
test cases that simulate real-world usage. These test cases help
illustrate how the system handles different types of user
queries, ranging from straightforward to complex and error-
prone inputs.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

A. Testing

1. Test Case 1

Figure 14. Case Study 1

In the first case study, the user input precisely matched a

question posted on Stack Overflow. This accuracy in the input

enabled the system to quickly locate and fetch only three

articles that were exactly relevant to the search query.

Figure 15. Title retrieved from API for Case Study 1

Once these articles were retrieved from the API, the next

step involved applying a regular expression (regex) to match

the user's input against the titles of these articles. This ensured

that only the most relevant articles were considered further.

Subsequently, a greedy algorithm was implemented to rank

these articles. The greedy approach prioritized articles based

on a calculated score, which assessed both the number of

matches in the regex process and the engagement metrics (like

views and answers) of each article. The article with the highest

composite score was deemed the most relevant. This efficient

filtering and ranking process highlight the system’s capability

to handle precise queries with high accuracy, ensuring that the

user is provided with the most directly applicable and useful

content.

2. Test Case 2

Figure 16. Case Study 2

The second case study addressed a scenario where the user

input did not exactly match any existing keywords or phrases

found in Stack Overflow articles, leading initially to zero

results. To overcome this, the system performed a secondary

search focusing solely on the first word of the user's input,

"props.render."

Figure 17. Title retrieved from API for Case Study 2

This strategy significantly broadened the search scope,

fetching a larger array of articles. Once these articles were

retrieved, the same regex matching was applied to ensure the

articles had relevance to the initial query. The articles were

then ranked by relevance using the greedy algorithm, which

assessed the articles based on the alignment of their content

with the user's intended query and the engagement they had

received. This case demonstrates the system's ability to

adaptively widen the search parameters when faced with

initial failures, ensuring that the user still receives useful

results by leveraging broader keywords.

3. Test Case 3

Figure 18. Case Study 3

In the third scenario, the user entered a query with

common typographical errors where letters were substituted

with numerals, such as "pr0ps" instead of "props." The

system's robust design addressed this by first attempting to

fetch a range of variations on the user's input, correcting

"pr0ps" to "props" and "n0t" to "not." This process involved

multiple fetch attempts to find a match. If these attempts were

unsuccessful, the system defaulted to focusing on the initial

segment of the query, fetching variations on "pr0ps.r3nder" to

maximize the chances of retrieving relevant data. This

approach underscores the system's flexibility and its

sophisticated handling of user errors, utilizing intelligent

fallback strategies to salvage useful results from potentially

unsuccessful queries.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

4. Test Case 4

Figure 19. Case Study 4

The final case study revolved around a user input that

included a typo, "hydrtion" instead of "hydration." This

typographical error could potentially derail the search process,

but the system's implementation of the Levenshtein Distance

(LD) algorithm preemptively countered this issue. The LD

algorithm was employed after an initial broader search failed

to yield results, due to the dictionary not recognizing the

misspelled word. By comparing the misspelled word to similar

terms in an English dictionary, the system identified the

correct spelling and re-executed the search with the corrected

term. This not only salvaged the query but also ensured that

the results were relevant and accurate, demonstrating the

system’s advanced capability in handling and correcting user

input errors through intelligent algorithmic interventions.

Figure 20. Example searching not found

Source :
https://stackoverflow.com/search?q=hydrtion+ui+error

B. Analysis

The analysis of the four case studies conducted reveals a

robust and adaptive search system capable of handling a wide

array of query scenarios on Stack Overflow, from precise to

imprecise inputs. The first case study showcases the system's

efficiency in swiftly retrieving relevant results when user

inputs closely match database entries, reflecting its

effectiveness in straightforward scenarios. Conversely, the

subsequent case studies demonstrate the system's adeptness in

managing more complex interactions, such as vague queries or

inputs marred by typographical errors.

In particular, the system's use of regex for generating

variations and the Levenshtein Distance algorithm for

correcting errors highlights its sophisticated approach to

ensuring user queries—no matter how inaccurately inputted—

result in useful outcomes. This capability is crucial for

enhancing user satisfaction, as it minimizes potential

frustrations associated with unsuccessful searches. Moreover,

the greedy algorithm's role in prioritizing search results based

on relevance and engagement metrics ensures that users are

presented with the most useful and high-quality content.

However, the necessity of broadening searches and the

iterative fetching process indicate potential areas for

refinement, such as improving initial keyword extraction to

reduce reliance on broader searches. Integrating more

advanced natural language processing could enhance the

system's understanding of query context, further improving

accuracy and efficiency.

Overall, the system proves highly effective in adapting to

user needs and maintaining a high level of performance across

diverse querying conditions, underscoring its utility in a

dynamic search environment like Stack Overflow. This

analysis not only affirms the system's current capabilities but

also sets the stage for future enhancements that could leverage

emerging technologies for even better performance.

V. CONCLUSION

In conclusion, the development and implementation of the
enhanced search system for Stack Overflow have successfully
demonstrated the integration of complex algorithms such as
regular expressions, greedy ranking mechanisms, and the
Levenshtein Distance algorithm significantly improve the
handling of user queries. This system is designed to be robust
and adaptive, capable of managing a wide range of input
scenarios from exact matches to typographical errors and vague
queries.

Throughout the testing and analysis phases, the system
consistently showcased its ability to efficiently process and
respond to user inputs, delivering relevant and high-quality
results even under challenging conditions. The implementation
of regex has proven effective for pattern recognition and
variation handling, allowing the system to capture a broad
spectrum of potential user inputs. Meanwhile, the greedy
algorithm ensures that the most pertinent responses are
prioritized based on relevance and user engagement, enhancing
the overall utility of the search results.

Moreover, the integration of the Levenshtein Distance
algorithm has added a sophisticated layer of error correction,
which is crucial for accommodating common user mistakes and
ensuring that these do not hinder the search experience. This
feature not only improves the accuracy of the search results but
also enhances user satisfaction by reducing the frequency and
impact of unsuccessful searches.

Future enhancements could focus on incorporating
advanced natural language processing techniques to further
refine the understanding of user queries, potentially reducing
the need for broad searches and improving the system’s
efficiency. Additionally, optimizing the caching mechanism to

https://stackoverflow.com/search?q=hydrtion+ui+error

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

prioritize frequently encountered queries could enhance
response times and reduce computational overhead.

This project has not only improved the search functionality on
Stack Overflow but has also set a benchmark for how search
systems can evolve to meet the demands of real-world users in
dynamic and information-rich environments. By continuing to
adapt and integrate cutting-edge technologies, such systems
can provide even greater support to users, helping them
navigate vast databases with ease and efficiency.

VI. APPENDIX

The complete program of this paper can be found below

https://github.com/Filbert88/StackOverflow-Search-Enhancer

VIDEO LINK AT YOUTUBE

https://youtu.be/4itEYRlNb1A?si=-5c1eOOrP8k5T5pT

ACKNOWLEDGMENT

The author would like to express deep gratitude to the
following individuals for their invaluable support:

1. The Almighty God - The author acknowledges the divine
blessings and guidance that have been crucial in completing
this paper. The author's faith and reliance on divine support
have been fundamental throughout the writing process.

2. The Author's Parents - The constant support,
encouragement, and belief in the author's capabilities from
their parents have been indispensable. Their unwavering
presence and motivation have been a significant driving force
behind the completion of this work.

3. Dr. Ir. Rinaldi Munir, M.T., Dr. Ir. Rila Mandala, and Dr.
Nur Ulfa Maulidevi - The author extends a heartfelt thank you
to these esteemed professors from the IF2211 Algorithm
Strategies course. Their exceptional mentorship, insightful
guidance, and profound knowledge have greatly enhanced the

author's understanding of the subject. Their dedication and
expertise have had a profound impact.

The author is deeply grateful for the immeasurable
contributions of these individuals, whose support and guidance
have been essential to the successful completion of this paper.

REFERENCES

[1] Câmpeanu, C., Salomaa, K., & Yu, S. (2003). A FORMAL STUDY OF
PRACTICAL REGULAR EXPRESSIONS. International Journal of
Foundations of Computer Science, 14(06), 1007–1018.
https://doi.org/10.1142/s012905410300214x

[2] Baeldung. (n.d.). Levenshtein Distance Computation. Retrieved from
https://www.baeldung.com/cs/levenshtein-distance-computation

[3] Munir, R. (2021). Algoritma Greedy (Bagian 1). Retrieved from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag1.pdf

[4] Munir, R. (2019). String Matching dengan Regex. Retrieved from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-
Matching-dengan-Regex-2019.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Filbert (13522021)

https://github.com/Filbert88/StackOverflow-Search-Enhancer
https://youtu.be/4itEYRlNb1A?si=-5c1eOOrP8k5T5pT
https://www.baeldung.com/cs/levenshtein-distance-computation
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-Matching-dengan-Regex-2019.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-Matching-dengan-Regex-2019.pdf

